For any Einstein manifold (whose satisfies
$$R_{ij} = C g_{ij}$$
for some $C$), the Ricci flow equation becomes
$$\partial_t g_{ij} = -2 R_{ij} = -2C g_{ij}\Rightarrow (g_t)_{ij} = e^{-2Ct} g_{ij}$$
Thus $g_{ij}$ will be scaled and the curvature is changed (to a different constant) too.