The answer is in the affirmative. Consider $n=15$. Then $2$ and $7$ are prime and witnesses in that \begin{equation} 2^{14} = 16384 \equiv 4 (\text{mod } 15) \\\ 7^{14} = 678223072849 \equiv 4 (\text{mod } 15). \end{equation}
However, $14^{14} \equiv 1 (\text{mod }15)$, hence $2 \cdot 7 =14$ is a liar.