For suitable $A\subseteq 2\mathbb N$ we have that $$ L=\\{\,\alpha\in\\{a,b\\}^*:|\alpha|\
otin A\,\\}$$ is not regular (use the pumping lemma). But $L\cdot\\{\epsilon,a,b\\}=\\{a,b\\}^*$ is clearly regular.
For suitable $A\subseteq 2\mathbb N$ we have that $$ L=\\{\,\alpha\in\\{a,b\\}^*:|\alpha|\
otin A\,\\}$$ is not regular (use the pumping lemma). But $L\cdot\\{\epsilon,a,b\\}=\\{a,b\\}^*$ is clearly regular.