If $g$ is an element of order $p$ (this always exists by Cauchy's Theorem), let $$ Q=\frac1p\,\sum_{j=0}^{p-1} g^j. $$ Then $\text{tr}(Q)=1/p$ and $$ Q^*=\frac1p\,\left(\sum_{j=0}^{p-1} g^j\right)^*=\frac1p\,\sum_{j=0}^{p-1} g^{-j} =\frac1p\,\sum_{j=0}^{p-1} g^{p-j}=\frac1p\,\sum_{k=1}^{p} g^k=\frac1p\,\sum_{k=0}^{p-1} g^k=Q. $$ Note that $$g(1+g+g^2+\cdots+g^{p-1})=g+g^2+\cdots+g^p=1+g+g^2+\cdots+g^{p-1}.$$ It follows that $$g^k(1+g+g^2+\cdots+g^{p-1})=1+g+g^2+\cdots+g^{p-1}$$ for all $k$. Then $$(1+g+g^2+\cdots+g^{p-1})^2=p\,(1+g+g^2+\cdots+g^{p-1}).$$ Thus, $Q^2=Q$.