The standard for full credibility in terms of claims is $$n_C = \left(\dfrac{z_{\alpha /2}}{k}\right)^{2}\left(\dfrac{\sigma^2_F}{\mu_F}+\dfrac{\sigma^2_S}{\mu_S^2}\right)\text{,}$$ $F$ denoting frequency, $S$ denoting severity. Since $F \sim \text{Poisson}$, $\sigma^2_F = \mu_F$, so that $\dfrac{\sigma^2_F}{\mu_F} = 1$.
Notice we are NOT looking at _aggregate_ claims, so ignore the $\dfrac{\sigma^2_S}{\mu_S^2}$ (make it $0$). Now using the exam C parametrization, we have $$\mu_{S} = \dfrac{\theta}{\alpha - 1} = \dfrac{1}{2}$$ and $$\mathbb{E}[S^2] = \dfrac{2!\theta}{(\alpha - 1)(\alpha - 2)} = \dfrac{2}{2(1)} = 1\text{.}$$ Thus, $\sigma^2_S = 1 - \left(\dfrac{1}{2}\right)^2 = \dfrac{3}{4}$. With $k = 0.05$ and $\alpha = 1 - 0.95 = 0.05$, we have $$z_{\alpha / 2} = z_{1-0.975} = 1.960$$ so that $n_C = 1536.64$.
Now $n$, the expected number of claims, solves $$\sqrt{\dfrac{n}{n_C}} = 0.3 \Longleftrightarrow n = (0.3)^2n_C = 138.2976\text{.}$$