Bayes' theorem gives $$ P(I|\overline{C})={P(\overline{C}|I)\times P(I)\over P(\overline{C})} $$ $$ P(\overline{C}|I)\times P(I)=0.1\times0.2 $$
$$ P(\overline{C}) = P(\overline{C}|I)\times P(I) + P(\overline{C}|\overline{I})\times P(\overline{I}) $$ $$ =0.1\times0.2+ 0.95\times0.8 $$
$$ P(I|\overline{C}) = 0.1\times0.2/(0.1\times0.2+0.95\times0.8)=0.0256. $$