We have
$$\frac{x-y}{x+y}\ge0\iff\left(x-y\ge0\land x+y>0\right)\lor \left(x-y\le0\land x+y<0\right)$$ so the first case gives $x\ge|y|$ but $x\
e-y$ and the second case gives $-x\ge |y|$ but $x\
e-y$ so we conclude that $$|x|\ge|y|\quad\text{and}\; x\
e-y$$