Hint: Suppose $\alpha \in (0,{1 \over 2}]$. Write $\alpha x + (1-\alpha) y$ in terms of $y, {x+y\over 2}$ and use convexity.
Details:
> Let $\beta = 2 \alpha$, we can write $\alpha x + (1-\alpha) y= \beta ({x+y\over 2}) + (1- \beta) y $, and so $\| \alpha x + (1-\alpha)y\| \le \beta \| {x+y\over 2} \| + (1 - \beta) \|y\| < 1$.