You can go back to the limit definition of the derivative.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
Let $k(x) = f(x) + g(x)$. Then,
$$k'(x) = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - f(x) - g(x)}{h} = f'(x) + g'(x)$$
A similar argument shows that $[a f]'(x) = a f'(x)$ for a scalar $a$.