When calculating the area of a parametric curve you should express the area as follows,
$$A=\int y(x)~dx=\int y(t)\dot x(t)~dt$$
In your case we have $\dot x=a(1-\cos t)=y$, therfore
$$ \begin{align} A &=a^2\int_0^{2\pi} (1-\cos t)^2 ~dt\\\ &=a^2\left( \frac{3 t}{2} - 2 \sin t + \frac14 \sin 2t\right)\biggr|_0^{2\pi}\\\ &=3\pi a^2\approx 9.4248a^2 \end{align} $$