I figured it out. It's clear that the zonally averaged $\partial/\partial x$ is zero. The terms involving $\partial/\partial y$ come from expanding $vQ = ([v] + v^\star)([Q] + Q^\star)$, then noticing that $[v^\star [Q]] = [[v] Q^\star] = 0$. I also had to convince myself that $[\partial Q/\partial t] = \partial [Q] / \partial t$. I'd still be interested in a more rigorous answer, however.