$$\begin{align} \log\bigl((\log x)^{x^a}\bigr)&=x^a\log\log x\\\ \log(x^k)&=k\log x \end{align}$$ For all $a,k>0$$$ \lim_{x\to\infty}\frac{x^a\log\log x}{k\log x}=\infty. $$
$$\begin{align} \log\bigl((\log x)^{x^a}\bigr)&=x^a\log\log x\\\ \log(x^k)&=k\log x \end{align}$$ For all $a,k>0$$$ \lim_{x\to\infty}\frac{x^a\log\log x}{k\log x}=\infty. $$