Spherical coordinates is used to express $d^d k = k^{d-1} dk\, d\sigma$, where $d\sigma$ is the surface element of the $(d-1)$-sphere. Then $$\int \frac{d^d k}{k^2} = \int d\sigma \int \frac{k^{d-1}\, dk}{k^2} = C_d \int k^{d-3}\, dk$$ where $C_d$ is the surface area of the $(d-1)$-sphere.