Lets say generalized sheer takes the vector $\begin{bmatrix} x\\\y\end{bmatrix}$ to $\begin{bmatrix} x\\\y\end{bmatrix}$ and the orthogonal vector,
$\begin{bmatrix} -y\\\x\end{bmatrix}$ to $\begin{bmatrix} -y + kx\\\x + ky\end{bmatrix}$
in term of the basis$\left\\{\begin{bmatrix} x\\\y\end{bmatrix},\begin{bmatrix} -y\\\x\end{bmatrix}\right\\}$ our transformation is $T = \begin{bmatrix} 1&k\\\0&1 \end{bmatrix}$
And in terms of the standard basis
$\begin{bmatrix} 1 -\frac {kxy}{x^2+y^2} & \frac {kx^2}{x^2+y^2}\\\\-\frac {ky^2}{x^2+y^2}&1+\frac{kxy}{x^2+y^2}\end{bmatrix}$