Without loss of generality, assume that $\angle B \geq \angle C$. Now suppose that $\angle B \leq \pi / 2$. Drop a perpendicular from $O$ to $D$ on $\overline{AC}$.
!enter image description here
By the Inscribed Angle Theorem, $\angle AOC = 2 \angle B$, so $\angle AOD = \angle B$. Therefore, $\angle BAH$ and $\angle OAD$ are congruent complements of $\angle B$, whereupon $$\angle HAT = \angle BAT - \angle BAH = \angle CAT - \angle OAD = \angle OAT$$ so that $\overline{AT}$ bisects $\angle OAH$.
Now suppose that $\angle B > \pi / 2$.
!enter image description here
We have $\angle AOC + 2\angle B = 2\pi$, whence $\angle AOD = \pi - \angle B$. Therefore, $\angle BAH$ and $\angle OAD$ are congruent complements of $\angle AOD$, whereupon $$\angle HAT = \angle BAT + \angle BAH= \angle CAT + \angle OAD = \angle OAT.$$