Let $d_A$ denote the covariant derivative on $P$ induced by $A$. Then $d_A$ is a map $$d_A: \Omega^0_G(P; V) \longrightarrow \Omega^1_G(P; V),$$ where $\Omega^k_G(P; V)$ denotes the space of basic $V$-valued $k$-forms on $P$. Now for each $k$ there is an isomorphism $$\psi_k: \Omega^k_G(P; V) \xrightarrow{~\cong~} \Omega^k(M; P \times_\chi V),$$ where $M$ is the base space of $P$. Then the induced covariant derivative $\
abla^A$ on $P \times_\chi V$ induced by $A$ and $\chi$ is the map making the following diagram commute: $$\require{AMScd} \begin{CD} \Omega^0_G(P; V) @>{d_A}>> \Omega^1_G(P; V) \\\ @V{\psi_0}VV @VV{\psi_1}V \\\ \Omega^0(M; P \times_\chi V) @>>{\
abla^A}> \Omega^1(M; P \times_\chi V). \end{CD}$$