$P \leftrightarrow Q$ is equivalent to :
> $(P \to Q) \land (Q \to P)$.
In turn, $A \land B$ is equivalent to :
> $(A \to (B \to \bot)) \to \bot$.
$P \leftrightarrow Q$ is equivalent to :
> $(P \to Q) \land (Q \to P)$.
In turn, $A \land B$ is equivalent to :
> $(A \to (B \to \bot)) \to \bot$.