Let $y=xt.$ Then
$$f(x) = \frac{1}{x^{a}}\int_1^{1/x}\frac{1}{(t-1)^at}\,dt.$$
Thus $f(x) \sim C/x^a,$ where
$$C = \int_1^\infty\frac{1}{(t-1)^at}\,dt.$$
Let $y=xt.$ Then
$$f(x) = \frac{1}{x^{a}}\int_1^{1/x}\frac{1}{(t-1)^at}\,dt.$$
Thus $f(x) \sim C/x^a,$ where
$$C = \int_1^\infty\frac{1}{(t-1)^at}\,dt.$$