By Gauss-Ostrogradski we have: $$ \iint\limits_S a\:n\:\text{d}S=\iiint\limits_V \text{div}(a)\:\text{d}V=0, $$ because $$ \text{div}(a) = \frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}=0. $$
By Gauss-Ostrogradski we have: $$ \iint\limits_S a\:n\:\text{d}S=\iiint\limits_V \text{div}(a)\:\text{d}V=0, $$ because $$ \text{div}(a) = \frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}=0. $$