Artificial intelligent assistant

Trisect a quadrilateral into a $9$-grid; the middle has $1/9$ the area Trisect sides of a quadrilateral and connect the points to have nine quadrilaterals, as can be seen in the figure. Prove that the middle quadrilateral area is one ninth of the whole area.!enter image description here

Consider all occurring points as vectors, as in @Calvin Lin's answer, and write $\mu$ for ${1\over3}$. Then $$p=(1-\mu)a+\mu b,\quad h=(1-\mu)d+\mu c,\quad n=(1-\mu)a+\mu d,\quad e=(1-\mu) b+\mu c\ .$$ It follows that $$(1-\mu)p+\mu h=(1-\mu)n+\mu e\quad(=:w')\ ,$$ which shows that in fact $$w=w'=(1-\mu)^2 a +\mu(1-\mu)(b+d)+\mu^2 c\ .$$ Interchanging $a$ and $c$ here gives $$y=(1-\mu)^2 c +\mu(1-\mu)(b+d)+\mu^2 a\ ,$$ so that we arrive at $$w-y=(1-2\mu)(a-c)\ .$$ Appealing to symmetry again we conclude that we also have $$x-z=(1-2\mu)(b-d)\ .$$ It follows that $${\rm area}[WXYZ]=(1-2\mu)^2\ {\rm area}[ABCD]\ ,$$ and this holds for any $\mu\in[0,{1\over2}[\ $.

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 67771d1430d1a2ceb1a36025d5a1aa32