I agree with you. The confidence interval is
$$\large{\left[\overline x-t_{(1-\tfrac{\alpha}{2};n-1)}\cdot \frac{s}{\sqrt n} ; \ \overline x+t_{(1-\tfrac{\alpha}{2};n-1)}\cdot \frac{s}{\sqrt n} \right]}$$
In your case $1-\tfrac{\alpha}{2}=1-\frac{0.05}{2}=1-0.025=0.975, n=25, \overline x=150$ and $s=10$. Thus the interval is
$\left[150-t_{(0.975;24)}\cdot \frac{10}{5} ; \ 150+t_{(0.975;24)}\cdot \frac{10}{5} \right]$, where $t_{(0.975;24)}=2.064$