Let
* $\displaystyle\mathscr{P} = \left\\{ 0,\frac{1}{n},\frac{2}{n},\cdots,\frac{n}{n}\right\\}$ be a partiton of $[0,1]$.
* $M(f;I_{k})= \sup \left\\{\: f(x) \ : \ x \in I_{k}\ \right\\}$
* $|I_{k}| =\text{Length of the interval $I_{k}$}$
The Upper Riemann Sum corresponding to $\mathscr{P}$ is defined as \begin{align*} U\left(f;\mathscr{P}\right) &= \sum_{k=1}^{n} M(f;I_{k})\cdot |I_{k}| \\\&= \left( \frac{2}{n}+1\right) \cdot \frac{1}{n} + \left(\frac{4}{n}+1\right)\cdot \frac{1}{n} + \cdots + \left(\frac{2n}{n}+1 \right)\cdot \frac{1}{n} \\\ &= \frac{2}{n^{2}} \cdot (1+2+ \cdots +n) +1 \\\ &= \frac{2}{n^{2}} \cdot \frac{n^{2}+n}{2} + 1 \end{align*}
Now take $\displaystyle\lim_{n \to\infty} U\left(f,\mathscr{P}\right)$ to get the answer.