Let $\psi : B\to C$ and $\pi : P \to B$ be the relevant maps, then $$ \ker(\psi\circ\pi) = \\{x \in P : \psi(\pi(x)) = 0\\} = \\{x\in P : \pi(x) \in \ker(\psi)\\} $$ Since $0 \to A\hookrightarrow B\xrightarrow{\psi} C \to 0$ is exact, $\ker(\psi) = A$, hence $$\ker(\psi\circ\pi) = \pi^{-1}(A)$$ which is $E$ by definition.