Consider $G = \langle a\rangle:\langle b\rangle\cong \mathbb{Z}_p:\mathbb{Z}_q$, a semidirect product, by $bab^{-1} = a^{m}$ for some $m$ such that $m^q\equiv 1\pmod p$. Let $\phi:\langle a\rangle\to G$ be a homomorphism, then $\phi(a) = a^n$ for some $n$, because $\phi(a)$ has order $1$ or $p$.
For any $g\in G$, $g = a^kb^l$ for some $k,l$. Then $gag^{-1} = a^kb^lab^{-l}a^{-k} = a^{m^l}$, and so $\phi(gag^{-1}) = a^{m^ln}$, while $g\phi(a)g^{-1} = a^kb^la^nb^{-l}a^{-k} = a^{m^ln}$. So they are equal.