Identify $(a,b):=(x\mapsto ax+b)\in G$ with the column vector $\begin{bmatrix}a\\\b\end{bmatrix}$. The left multiplication by $(a,b)\in G$ is given by the affine map $(a',b')\mapsto \begin{bmatrix}a&0\\\0&a\end{bmatrix}\begin{bmatrix}a'\\\b'\end{bmatrix}+\begin{bmatrix}0\\\b\end{bmatrix}$, whereas the right multiplication by $(a,b)$ is given by the affine map $(a',b')\mapsto \begin{bmatrix}a&0\\\b&1\end{bmatrix}\begin{bmatrix}a'\\\b'\end{bmatrix}$. For the left multiplication by $(a,b)$, the determinant of $\begin{bmatrix}a&0\\\0&a\end{bmatrix}$ is $a^2$, which is the reason for the factor $\frac{1}{a^2}$ in the left Haar measure $\text{d}\mu(a,b)$. For the right multiplication by $(a,b)$, the determinant of $\begin{bmatrix}a&0\\\b&1\end{bmatrix}$ is $a$, which is why we have the factor $\frac{1}{a}$ in the right Haar measure $\text{d}\mu'(a,b)$.