Yes, $\ a,b\mid c\,\Rightarrow\, ab\mid ac,bc\,\Rightarrow\, ab\mid(ac,bc)=(a,b)c\,\Rightarrow\,ab/(a,b)\mid c,\ $ where, for variety, I have replaced your use of the Bezout Identity by the GCD Distributive Law.
**Remark** $\ $ The reverse implications are also true, which shows $\,{\rm lcm}(a,b) = ab/\gcd(a,b).$