You do not consider the case $r=1$. If you consider the case $r=1$ the calculation would be
$\sum _{r=1}^{\infty} r \left( \frac{1}{8}\right)\cdot \left( \frac{7}{8}\right)^{r-1}+\sum _{r=1}^{\infty } r \left( \frac{7}{8}\right)*\left( \frac{1}{8}\right) ^{r-1}=8+\frac{8}{7}$
Now you subtract in both cases the summand when $r=1$.
$E(N)=\sum _{r=1}^{\infty} \left[ r \left( \frac{1}{8}\right)\cdot \left( \frac{7}{8}\right)^{r-1} \right]-\frac{1}{8}+\sum _{r=1}^{\infty } \left[ r \left( \frac{7}{8}\right)*\left( \frac{1}{8}\right) ^{r-1} \right] -\frac{7}{8}=8+\frac{8}{7}-\left(\frac{1}{8}+\frac{7}{8}\right) =8+\frac{8}{7}-1$
The condition is, that at least one left-handed and at least one right-handed person have to be obtained. Thus r cannot be 1.