Let $X_i \sim Ber(p)$, then $Y = \sum_{i=1}^n X_i \sim Bin(n,p)$.
From the CLT we have $$\frac{Y - E[Y]}{\sqrt{Var(Y)}} = \frac{Y - np} {\sqrt{np(1-p)}} \sim N(0,1),$$
Plugging the values you have: $$\frac{120 - 130 \times 0,95} {\sqrt{130 \times 0,95 \times (1-0,95)}} =-1.40848,$$ So, $$\mathbb{P}(\text{overbook})=\mathbb{P}(Y>120) = \mathbb{P}(Z>1.40848),$$ where $Z \sim N(0,1)$. Hence, $\mathbb{P}(\text{overbook}) = 0.886$