Assume $A \subseteq B$. Let $y \in f(A)$. Then $\exists x \in A : f(x)=y$. But $A \subseteq B$, so if $x \in A$, then $x \in B$. Therefore, $\exists x \in B : f(x) = y$ so that $y \in f(B)$ as required. We conclude that $f(A) \subseteq f(B)$.
Assume $A \subseteq B$. Let $y \in f(A)$. Then $\exists x \in A : f(x)=y$. But $A \subseteq B$, so if $x \in A$, then $x \in B$. Therefore, $\exists x \in B : f(x) = y$ so that $y \in f(B)$ as required. We conclude that $f(A) \subseteq f(B)$.