Since $q+\frac{pq}{a}=\frac{q}{a}(a+p)$, your expression factorises to $$2(p+a)\left(\frac{q}{a}\frac{-pq}{a^2}+1\right)=2(p+a)(1-pq^2/a^3).$$
Since $q+\frac{pq}{a}=\frac{q}{a}(a+p)$, your expression factorises to $$2(p+a)\left(\frac{q}{a}\frac{-pq}{a^2}+1\right)=2(p+a)(1-pq^2/a^3).$$