Note that$$\frac{z^2}{(z^2+9)^2(z^2+4)}=\frac{z^2}{(z-3i)^2(z+3i)^2(z^2+4)}.$$Now, let $g(z)=\frac{z^2}{(z+3i)^2(z^2+4)}$. Then $g(3i)=-\frac1{20}$ and $g'(3i)=-\frac{13i}{300}$. Therefore,\begin{align}\frac{z^2}{(z-3i)^2(z+3i)^2(z^2+4)}&=\frac{-\frac1{20}-\frac{13i}{300}(z-3i)+\cdots}{(z-3i)^2}\\\&=-\frac1{20(z-3i)^2}-\frac{13i}{300(z-3i)}+\cdots,\end{align}and so$$\operatorname{res}_{z=3i}\frac{z^2}{(z^2+9)^2(z^2+4)}=-\frac{13i}{300}.$$