So I'm just elaborating on the comment by cobber.hat.
Take $x = (1,0,0,\ldots)$ and $y = (0,1,0,\ldots)$. then: $$\lVert x+y\lVert^2_\infty =1 \qquad \lVert x-y\lVert^2_\infty =1 \qquad \lVert x\lVert^2_\infty =1 \qquad \lVert y\lVert^2_\infty =1$$
Thus we have a counter example to your formula.