A quick check shows that $$\sum_{a \in A} a^k = \sum_{b \in B} b^k$$ for $k \in \\{1,2,\ldots,8\\}$. So you can approximate it using binomial theorem $$\sqrt{a+x} = \sqrt{a} \sqrt{1+\dfrac{x}a} = \sqrt{a} \times \left(1 + \dfrac12 \dfrac{x}a - \dfrac12 \times \dfrac12 \left(\dfrac{x}{a} \right)^2 + \dfrac12 \times \dfrac12 \times \dfrac32 \left(\dfrac{x}{a} \right)^3 \mp \cdots \right)$$ to see that the difference between the two is of the order of $$1000 \times \dfrac12 \times \dfrac12 \times \dfrac32 \times \dfrac52 \times \dfrac72 \times \dfrac92 \times \dfrac{11}2 \times \dfrac{13}2 \times \dfrac{15}2 \times \left(\dfrac{\sum_{a \in A} a^9 - \sum_{b \in B} b^9}{1000000^9} \right) \approx 10^{-37}$$ (since the first nine terms in both the expansions are the same).