It is not clear what you meant with "not using $\psi(x)$".
For $\Re(x) > 0$ $$\int_0^\infty\left(\frac{e^{-t}}t-\frac{e^{-xt}}{1-e^{-t}}\right)dt = \int_0^\infty e^{-t}\left(\frac{1}t-\frac{1}{1-e^{-t}}\right)dt+ \int_0^\infty\left(\frac{e^{-t}-e^{-xt}}{1-e^{-t}}\right)dt$$ $$ = C+\sum_{n=0}^\infty \int_0^\infty (e^{-(n+1)t}-e^{-(n+x) t})dt=C+\sum_{n=0}^\infty \left(\frac{1}{n+1}-\frac{1}{n+x}\right) = C+\gamma + \psi(x)$$ $C=- \gamma$ by looking at $x=1$
* * *
$$\int_1^\infty \ln(u-1)u^{-x}du = \frac{D}{x-1}+\int_1^\infty \ln(u-1)(u^{-x}-\frac{u^{-2}}{x-1})du \\\= \frac{1}{x-1}(D+\int_1^\infty \frac{u^{1-x}-u^{-1}}{u-1} du)=\frac{1}{x-1}(D+\int_0^\infty \frac{e^{(1-x)t}-e^{-t}}{1-e^{-t}} dt )= \frac{\psi(x-1)+D}{x-1}$$