Artificial intelligent assistant

Does Zorn Lemma imply the existence of a (not unique) maximal prolongation of any solution of an ode? Let be given a map $F:(x,y)\in\mathbb{R}\times\mathbb{R}^n\to F(x,y)\in\mathbb{R}^n$. Let us denote by $\mathcal{P}$ the set whose elements are the solutions of the ode $y'=F(x,y)$, i.e. the differentiable maps $u:J\to\mathbb{R}^n$, where $J\ $ is some open interval in $\mathbb{R}\ $, s.t. $u'(t)=F(t,u(t))$ for all $t\in J$. Let $\mathcal{P}$ be endowed with the ordering by extension. In order to prove that any element of $\mathcal{P}$ is extendable to a (not unique) maximal element, without particular hypothesis on $F$, I was wondering if the Zorn lemma can be used.

Yes, Zorn's Lemma should be all you need. Take the set of partial solutions that extend your initial solution, and order them by the subset relation under the common definition of a function as the set of pairs $\langle x, f(x)\rangle$. Then the union of all functions in a chain will be another partial solution, so Zorn's Lemma applies.

xcX3v84RxoQ-4GxG32940ukFUIEgYdPy 5f0cd6b4563b1224953bfd46965aa575