Let's suppose your original point is $(\theta,\phi)$ in radians.
Let $s$ be arc length, in your case, $s=3$, $r$ be the radius of sphere. If you are talking about earth, then $r$ is the radius of earth in miles.
The new latitude will be $\theta\pm \frac{s}{r}$. The new longitude will be $\phi \pm \frac{s}{r}$.
$\pm$ means $+$ or $-$. So the new points are: $(\theta+\frac{s}{r}, \phi +\frac{s}{r}), (\theta+\frac{s}{r}, \phi -\frac{s}{r}), (\theta-\frac{s}{r}, \phi +\frac{s}{r}), (\theta-\frac{s}{r}, \phi -\frac{s}{r})$, in the order of upper right, lower right, upper left, lower left.