Here is what you do, replace $t$ by $\frac{1}{x}$ in your function, then compute Taylor Series at the point $x = 0$. This gives,
> $$1-{\frac {1}{2}}x+{\frac {11}{24}}{x}^{2}-{\frac {7}{16}}{x}^{3}+{ \frac {2447}{5760}}{x}^{4}+O \left( {x}^{5} \right) $$
Now, substitute $x = \frac{1}{t}$ in the above series yields,
> $$1-{\frac {1}{2t}}+{\frac {11}{24 t^2 }}-{\frac {7}{16 t^3}}+{ \frac {2447}{5760 t^4}} + O \left( {1/t}^{5} \right)\,.$$
For the big O notation, we say $f$ is a big O of $g$, if $|f(x)|\leq C|g(x)|$. Apply this definition to the above asymptotic series, you get the answer
> $$ 1-{\frac {1}{2t}}+ O \left( {1/t}^{2} \right) \,.$$