Hint: for $n=1$ we have the isomorphism $(\mathbb{Z}/k\mathbb{Z})/(m\mathbb{Z}/k\mathbb{Z})\simeq \mathbb{Z}/m\mathbb{Z}$ via $(l+k\mathbb{Z})+m\mathbb{Z}\mapsto l+m\mathbb{Z}$. Now generalize this map to $n\ge 2$.
Hint: for $n=1$ we have the isomorphism $(\mathbb{Z}/k\mathbb{Z})/(m\mathbb{Z}/k\mathbb{Z})\simeq \mathbb{Z}/m\mathbb{Z}$ via $(l+k\mathbb{Z})+m\mathbb{Z}\mapsto l+m\mathbb{Z}$. Now generalize this map to $n\ge 2$.