A simple way is to calculate all principle minors of $A$. If they are all positive, then $A$ is positive definite.
For example, $|A|_1=2>0$
$$ |A|_2=\left|\begin{array}{}{\quad2 \quad-1\\\ -1\quad 2} \end{array}\right|=3>0 $$ Then calculate $|A|_3=|A|$.
If $|A|_i\geqslant0,1\leqslant i\leqslant n$, then $A$ is semi-positive definite.
If $|A|_i<0$ for $i$ is odd and $|A|_i>0$ for $i$ is even, then $A$ is negative definite.
If $|A|_i\leqslant 0$ for $i$ is odd and $|A|_i\geqslant 0$ for $i$ is even, then $A$ is semi-negative definite.