Recall for an $R$-module $M$ and $\mathfrak{a}$ ideal of $R$ the canonical isomorphism $$M \otimes_R R/\mathfrak{a} \cong M/\mathfrak{a}M$$ In particular $$I \otimes R/L \cong I/IL$$ since $IL+J \subset I$, you have the inclusion $$\frac{IL+J}{IL} \to \frac{I}{IL} \cong I \otimes \frac{R}{L}$$