No. If $\lim_{n} \|A\psi_{n}\|=0$ implies $\lim_{n}\|\psi_{n}\|=0$, then the inverse of $A$ is continuous. It's easy to construct a counterexample. For example, on $L^{2}[0,\infty)$, $$ Af = xf,\;\;\; f \in \mathcal{D}(A)=\\{ f \in L^{2} : xf \in L^{2} \\}. $$ In this case, $\psi_{n}=\sqrt{n}\chi_{[0,1/n]}$ is a unit vector in $L^{2}[0,\infty)$, and $$ \|A\psi_{n}\|^{2}=n\int_{0}^{1/n}x^{2}dx \rightarrow 0 \mbox{ as } n \rightarrow\infty. $$