$r e^{i\theta} = r \cos(\theta) + i r \sin(\theta)$, so $$|\sin(r e^{i\theta})|^2 = \sin(r \cos(\theta))^2 + \sinh(r \sin(\theta))^2$$
$r e^{i\theta} = r \cos(\theta) + i r \sin(\theta)$, so $$|\sin(r e^{i\theta})|^2 = \sin(r \cos(\theta))^2 + \sinh(r \sin(\theta))^2$$