Using DeMoivre's Theorem and the Binomial Theorem, you get:
$\cos 5\theta + i\sin 5\theta = (\cos \theta + i\sin \theta)^5$
$= \cos^5\theta + 5i\cos^4\theta\sin\theta + 10i^2\cos^3 \theta\sin^2\theta + 10i^3\cos^2 \theta\sin^3\theta + 5i^4\cos \theta \sin^4 \theta + i^5\sin^5\theta$
$= \cos^5\theta + 5i\cos^4\theta\sin \theta - 10\cos^3 \theta\sin^2\theta - 10i\cos^2 \theta\sin^3\theta + 5\cos\theta\sin^4 \theta + i\sin^5\theta$
$= (\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4 \theta)+i(5\cos^4\theta\sin \theta - 10\cos^2 \theta\sin^3\theta + \sin^5\theta)$
Equate real and imaginary parts to get expressions for $\cos 5\theta$ and $\sin 5\theta$. Can you finish from here?