$$\int_0^{\infty} \int_0^{y/2} \exp(x-y) dx dy = \int_0^{\infty} \int_{2x}^{\infty} \exp(x-y) dy dx$$
Note that both, not surprisingly, yield the same answer.
$$\int_0^{\infty} \int_0^{y/2} \exp(x-y) dx dy = \int_0^{\infty} (\exp(-y/2) - \exp(-y)) dy = 1$$
$$\int_0^{\infty} \int_{2x}^{\infty} \exp(x-y) dy dx = \int_0^{\infty} \left. - \exp(x-y) \right|_{2x}^{\infty} dx = \int_0^{\infty} \exp(-x) dx = 1$$