They do not express the same vector per se (but they can of course by taking the unit vectors $\vec{v}=\vec{e}_1$ and $\vec{w}=\vec{e}_2$). $\vec{v},\vec{w}$ can express _any_ vector (let's work in the $2$-dimensional case), so $$a\vec{v} + b\vec{w}=a\begin{pmatrix} v_1 \\\ v_2 \end{pmatrix}+b\begin{pmatrix} w_1 \\\ w_2 \end{pmatrix}=\begin{pmatrix} av_1+bw_1 \\\ aw_2+bw_2 \end{pmatrix}$$ while $\hat{i}, \hat{j}$ express _unit_ vectors (because they represent standard basis vectors), so $$a_x\hat{i} + a_y\hat{j}=a_x\begin{pmatrix} 1 \\\ 0 \end{pmatrix}+a_y\begin{pmatrix} 0 \\\ 1 \end{pmatrix}=\begin{pmatrix} a_x \\\ a_y \end{pmatrix}$$