$f(z)=\exp(g(z))$ where $g(z)=-\frac{1+z}{1-z}$. $g$ maps the unit disk $\mathbb{D}$ onto $\mathbb{H} = \\{z : \mathrm{Re}(z) < 0\\}$ bijectively; (see Moebius transformation). Then $\exp$ sends $\mathbb{H}$ onto $\mathbb{D}\setminus\\{0\\}$, as you correctly said.