You’re making it too hard. Assuming that the piles are numbered so that $x_1$ is the one with more stones than the Nim sum of the other four, you have $x_1>x_2\oplus x_3\oplus x_4\oplus x_5$, so just remove
$$x_1-(x_2\oplus x_3\oplus x_4\oplus x_5)$$
stones from the first pile. This will leave $x_2\oplus x_3\oplus x_4\oplus x_5$ stones in the first pile, and $n\oplus n=0$ for all $n$.