Using proportional segments theorem: $BP:AP=BN:AD=1:2$. Thus, $BP=AB$ similarly, $QA=AB$. So $QP=3AB$ and the height is $\frac{3}{4}$ of the height to $AB$. Thus, $A_{\triangle{QPO}}=3 \cdot \frac{3}{4} \cdot \frac{1}{2}=\frac{9}{8}$
Using proportional segments theorem: $BP:AP=BN:AD=1:2$. Thus, $BP=AB$ similarly, $QA=AB$. So $QP=3AB$ and the height is $\frac{3}{4}$ of the height to $AB$. Thus, $A_{\triangle{QPO}}=3 \cdot \frac{3}{4} \cdot \frac{1}{2}=\frac{9}{8}$