I'll use the deduction theorem, so I'll assume $\beta$ and need to prove $\
eg\
eg\beta$.
1. $\beta$ (assumption)
2. $\beta\to (\
eg\
eg\
eg\beta\to\beta)$ (axiom 1)
3. $\
eg\
eg\
eg\beta\to\beta$ (modus ponens using 1 and 2)
4. $\
eg\
eg\
eg\beta\to\
eg\beta$ (you have proved that $\
eg\
eg\beta\to\beta$ is a theorem)
5. $(\
eg\
eg\
eg\beta\to\
eg\beta)\to((\
eg\
eg\
eg\beta\to\beta)\to\
eg\
eg\beta)$ (axiom 3)
6. $(\
eg\
eg\
eg\beta\to\beta)\to\
eg\
eg\beta$ (modus ponens using 4 and 5)
7. $\
eg\
eg\beta$ (modus ponens using 3 and 6)