We give a more elementary solution than the one already provided. Let $V$ denote the representation on $M_3(\mathbb{C})$. Every $A \in SU(2)$ is conjugate to a diagonal matrix $D = \text{diag}(e^{i\theta}, e^{-i\theta})$ so $\chi_V(A) = \chi_V(D)$. For $X \in M_3(\mathbb{C})$, written as $X = (x_1, x_2, \dots, x_9)$ by concatenating the rows of the matrix, we may compute that$$D \cdot X = (x_1, z^2 \cdot x_2, z \cdot x_3, z^{-1} \cdot x_4, x_5, z^{-1} \cdot x_6, z^{-1} \cdot x_7, z \cdot x_8, x_9)$$where $z = e^{i\theta}$. Hence$$\chi_V(D) = 3 + z^2 + z^{-2} + 2(z + z^{-1}) = 3 + 2\cos 2\theta + 4\cos\theta = (2\cos\theta + 1)^2 = \chi_{(V_\text{triv} \oplus V_1)^{\otimes 2}}.$$Now, using the Weyl integration formula, we can do some annoying computations and decomopse$$V \cong 2V_{\text{triv}} \oplus 2V_1 \oplus V_2.$$